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Abstract: The general problem of solving for normal flow dcplh in open-chan

nel flow has a complication in that some types of channel cross sections do not

always have a unique solution. This paper analyzes an alternative iterative pro

cedure for quickly and accurately solving the implicit problem of determining the

normal flow depth in complex channel sections. Conditions that guarantee a unique

solution and guarantee that the iterative procedure will converge to the solution

are developed. A computer program for quickly and accurately finding the unique

solution, using the Chezy or Manning flow resistance equations, is available. Test

runs for a rectangular, a triangular, a trapezoidal, and two complex channel cross

sections are used to evaluate the effectiveness of the procedure. The test results

show that the iterative procedure presented here meets the requirements of guar

anteed convergence, computational efficiency (speed and accuracy), and the ability

to handle both trapezoidal and complex channel cross sections.

Introduction

The Chezy and Manning equations are widely used for determining the

relations between the mean velocity of a turbulent steady uniform flow, the

hydraulic roughness, and the slope of the channel bottom. There are no com

putational difficulties in solving these equations when the channel slope or

channel discharge is the unknown. However, when the channel cross section

is the unknown, the solution generally cannot be found explicitly, and for

some types of channel cross section the problem does not always have a

unique solution (Henderson 1966). For example, sufficiently high flow in a

circular conduit will not have a unique solution (Barr and Das 1986). Chow

(1959) provided a graphic procedure for the direct solution of the normal

depth in rectangular and trapezoidal channels and in circular conduits run

ning partially full. Graphic solutions were also presented by Jeppson (196S)

for particular channel geometric shapes. Barr and Das (1986) presented a

numerical solution for rectangular channels and both numerical and graphic

procedures for trapezoidal channels and circular conduits running partially

full using the Manning equation.

Although the concepts behind these methods are still valid, there is a need

for replacing these particular approaches by computational algorithms to be

implemented in modern high-speed computers. The Newton-Raphson method

has been the usual numerical technique for solving the implicit problem of

determining normal flow depth in a computer (McLatchy 1989). However,

the method is sensitive (timewise) to starting position and, for some types

of channel cross section, there is no guarantee that the method will converge

to a unique solution (Press et al. 1986).
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The purpose of this paper is to accomplish the following: (1) Develop an

alternative iterative procedure for quickly and accurately finding normal flow

depth in complex channel cross sections; (2) find conditions guaranteeing

both a solution that is unique and an iterative procedure that will converge

to the solution; (3) present computational forms optimized for the special

trapezoidal and more general complex channel cross sections; and (4) per

form test runs to verify convergence and computational efficiency (speed and

accuracy of the program). The findings from this paper will be helpful in

contributing directly to the development of computer simulation models by

providing an efficient algorithm with guaranteed convergence for computing

normal flow depth when necessary.

Flow Resistance Equations

In this paper, A and P denote flow cross-sectional area (L2) and wetted
perimeter (£,), respectively, as a function of flow depth. (Note: L represents

length and T time for all variables.) The hydraulic radius, R (in L), is defined

by:

The Chezy equation for a turbulent uniform flow (Chow 1959) may be

written as:

V = C(Soff)'/2 (2a)

and the Manning equation may be written as:

V = I —

where V = the mean flow velocity (Z.7"1); So = the slope of the channel

bottom in the direction of flow; C = the Chezy factor of flow resistance

(LU2T'1); and n = the Manning coefficient of hydraulic roughness (L~UiT).
Velocity and area are related to flow discharge, Q (in L37"'), by:

Q = AV (3)

Combining Eqs. 1—3 gives:

Q = KA"P~^ (4)

where for the Chezy equation:

AT = CSl0'2, a=l, p = ; (5a)

and for the Manning equation:

S'o'S'o'2 5 2
p. « , p

m 3 3

In the following section, an iterative procedure is presented to solve the
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uniform flow equations quickly and accurately for the normal depth, y, when

Q, A, and P satisfy certain conditions.

Numerical Analysis

Consider a channel cross section in which the flow rate can be expressed

by Eq. 4 and satisfying the following:

1. K, a, and P arc positive.

2. Q, A, and P are nonnegative, continuous, and strictly increasing.

3. 0(0) = i4(0) = 0, and (?(«) = >4(») = ».

For a given Qo ^ 0, one wishes to solve Q(y) = Qo for y a 0. Since,

by the last two conditions, Q is continuous and strictly increasing from 0 to

°°, a unique solution to the equation exists. Since Q can be mathematically

inverted only in special cases, one seeks a numerical solution.

By the second condition, A is strictly increasing and continuous, and thus

invertiblc, and its function inverse, A'\ is continuous and increasing. It can

be assumed that there is either a mathematical formula for the inverse (as

in the case of a trapezoidal channel) or a numerical procedure for the inverse

(as when A is calculated by interpolation from a table of depth and area

values). It can also be assumed that A and P may be computed using math

ematical formulas or numerical procedures. For a given flow rate Qo > 0,

f(y) is defined as:

so that if y = /(.y), then Qo = Q(y). Given any initial y, > 0, ya is iteratively

defined by:

>V+i = /(>'„) (?)

Let y0 denote the true solution of Qo = Q(y0); then y0

1. If >• £ >'o. then >• s/(>) s >>„.

2. l(yo^y, then >•„ s/Cy) < >-.

are true according to the following: Assuming that y ^ >'o, from condition

2, one gets Q(y) ^ Q(y0) = Go- Since A and P are increasing, so arc A'1
and/. Rearranging the inequality Q(y) ^ Qo gives A(y) ^ (Q0/K)]/aP(yf/a;
applying A~' to both sides of the inequality gives >• < f(y). Applying/to

both sides of the inequality y =s y0 gives/(y) =£/(>•<>) = Vo- This establishes

the first premise; the second is similarly established.

It now can be shown that the sequence yn converges to y0. If the initial

value, y,, is less than or equal to y0, then premise 1 says that yn is an in

creasing sequence bounded above by y0. Such a sequence must converge to

some value >v Eq. 7 and the continuity of/give >•# = /(>'*). and hence

Co = <?(}*)■ Since the latter equation has yQ as its unique solution, >•* =

y0. If the initial value >-i is greater or equal to y0, then one gets ya to converge

downward to >-<,, using a similar argument with premise 2.

In the following, let Pn be P(yn) and Qn be Q(yn). Numerically, the pre-



ceding iteration has to be done until >•„ is dose to _v0 and Qn is close to (?o-

Since y0 is not available, one settles for having >•„.., close to yn and Qn close

to Qo. Relative errors are defined by:

re Q(n) = abs ( ^ ^ " ] (8)

and

re>•(«) = abs I" '"'\ (9)

It can be shown, under appropriate conditions, that:

. B

re Q(n) = abs (—-) - I £ abs (—- - 1) < re y(n) (10)

The first equality is true in general. The first inequality requires P < 1,

and the last inequality is special for a trapezoidal channel. Thus for a trap

ezoidal channel one needs only to check for re y(n) small.

Efficient computational procedures for / are presented in the following

sections, depending on whether the shape of the channel cross section is

triangular, rectangular, trapezoidal, or complex (defined by points connected

by straight lines). Conditions 1-3 will be proved for the complex cross-

section shape. Since the other cross-section shapes are special cases of the

complex cross section, conditions 1-3 arc also true for the other cross-sec

tion shapes.

Geometric Properties of Channel Section

Consider a fixed location in a trapezoidal channel (Fig. 1). For any given

depth of flow, >-, the following geometric relations can be defined:

A(y) = (b + c,y)y (11)

P(y) = b + c2y (12)

(b + c,y)y

"tH^b + c2y

FIG. 1. Geometric Elements of Channel Cross Section
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where b = the width of the channel bottom (L), and c, and c2 = constants

defined in terms of the side slopes z, and z2 (Fig. 1) as:

(14)

c2 = (1 + z;)W2 + (1 + ziyr- (15)

Triangular Channel Section

For a triangular-shaped channel section, b = 0 and c, > 0, and the flow

depth can be determined in terms of Q directly as follows. For the Chezy

equation:

il/5

y= \~z

and for the Manning equation:

3/5 ,

-[G&
Rectangular Channel Section

For a rectangular channel section, b > 0, ct = 0, and c2 = 2. The nu

merical procedure must be used to compute the flow depth. Using the Chezy

equation, Eq. 6 for/becomes:

f(y) = flj(a, + y)Ui (17a)

b
«i = -

6C/W <1M
and, using the Manning equation:

Ay) = o2(ai + y)v> (18a)

_b

i 2 • • ■

, v*,

(18c)-o©
General Trapezoidal Channel Section

For a genera] trapezoidal channel section, b > 0 and c, > 0. The nu

merical procedure must be used to compute the flow depth. Using the Chezy

equation, Eq. 6 for/becomes:

f(y) = x . " .l/2 (19a)
a, + (a2 + it-)"-1

iv- = [(a3 + y)a4]1/J (19W
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b
a,=— (19c)

2c i

a2 = a\ (19a1)

b
a3 = — (19e)

(2

-^T)(—) (19/)
CiSq/ \C|C/

and using the Manning equation:

/(y) = — (20a)
a, + (a2 + »')

H- = l(fl3 + v)«4]2/5 (20b)

b
a, = — (20c)

«2 = a] (20a1)

_b_

Ct

Complex Channel Section

Natural channel sections are in general very irregular, usually varying from

an approximate parabola to an approximate trapezoidal. A complex channel

cross section may be defined in terms of N specified flow depths (yj and

the distances to the left (ivZ.,) and right (»•/?,) sides of the channel at those

depths, as shown in Fig. 2. The following conditions arc assumed to hold:

1. The flow depth values, v,, arc strictly increasing and >•] = 0 (point at the

bottom of channel cross section).

2. The section widths, wt = wLt + wRit are nondecrcasing and iv, > 0, and

w2 > 0.

3. The sides of the channel are vertical above the last specified flow depth.

(This is done to prevent channel overflow. If extension at an angle is desired,

set the last y, value extremely high and set the wL, and wR, values to get the

desired angles.)

The following definitions arc used in the next sections:

Au'L, = wLm - wL, for 1 < i < N (21a)

An-/?, = «-«,,, - wR, for 1 ss i < N (2lfe)

A»v, = wv-n - w, for 1 < / < N (21c)

4)\ = >,-+i - y> for 1 £ i < N (21rf)
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y,=o

RG. 2. Complex Channel Cross Section Defined In Terms of Horizontal Sub

sections at Specified Flow Depths (>,) and Distances to Left (»/.,) and Right (»•«,)

Sides

For flow depth y with 0 £ y ^ y.v. let i be the index such that y, £ y £

y,+ l Fory > yN, let i = N. Cross-sectional area, /*(>•), and wetted perimeter,

P(y), are defined as:

My) = A,

where

- y,fa2, (22)

A, = 0.

A, = A,_ i + Ay,-ifllj-i +

a\, = \\>i for I < i: rs 1

for 1 < i'^ N

for 1 £ i <

a2v = 0.

(23a)

(236)

(23c)

(23c/)

(23e)

and

/»(>•) = Pi + (>•

where

P, = P,-, + for 1< i s N.

. (24)

(25a)

(256)

The second set of conditions are sufficient to show that the first set is true.
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(a)

(b)

FIG. 3. Channel Cross Sections: (a) Rectangular; (b) Triangular; and (c) Trape
zoidal

The only significant problem is showing that Q(y) given by Eq. 4 is con

tinuous at 0 and is strictly increasing.

Since Q = KA"P~*, with K > 0, a > 0, and p > 0, and A is strictly
increasing from 0, it suffices to show that R = A/P is continuous at 0 and

strictly increasing. The hydraulic radius R(0) is defined to be zero. To show

continuity of R(y) at 0, one needs to show that lim,_0 /?(>-) = 0. For 0 <

y £ y2, it can be shown that:

R(y) =
My) _ya\, y2a2,

P(y) »'■+>?!,
(26)

because / = 1, >•, = 0, and a\, =0. In this form, it is easily seen that R(y)
tends to 0 as y tends to 0. /?(>•) is strictly increasing when its derivative:

P(y?
for y > 0 (27)

Since P(yf > 0 for y > 0, to establish Eq. 27 one needs to show that s(y)
= A'(y)P(y) - A(y)P'(y) > 0 for y > 0. Since the second derivative /*"(>')
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4m

(a)

-3.1tn

(b)

FIG. 4. Complex Channel Cross Sections: (a) Section 1; and (b) Section 2

> 0, and P"(y) = 0, one gets *'(y) = /t"(y)P(y) - A(y)P\y) = A"(y)P(.y)

> 0. Since i4'(0) = P{0) = w, and A(0) = 0, one gets s(0) = w]. These

statements show that s(y) is a nondccrcasing function and a(0) ^ 0.

In the case that o2, > 0, since P(y) > 0 for >- > 0, one gets s'(y) > 0

for >-2 > y > 0. Since s(0) s 0, s(y) immediately becomes positive; since

5(y) is nondecreasing, it stays positive.

In the case that al, = 0, if, = us > 0; hence 5(0) = w\ > 0. Thus function
s(y) starts out positive, and since s(y) is a nondecreasing function, it stays

positive.

The first conditions 1 and 2 are valid in a more general setting but not in

complete generality. For example, in a circular conduit running partially full,

when the flow depth is sufficiently close to the top of the circle, there arc

two possible solutions to normal depth. The width restrictions cover most

practical open channel situations.

Performance and Evaluation

Test runs of the numerical procedure were performed as follows. For a

given channel cross section, bottom slope, flow resistance (Chezy's C or

Manning's «), and flow depth, the outflow rate was computed directly from

the equations. The given cross section, bottom slope, flow resistance, and

computed outflow rate were then used in the numerical procedure to estimate

the flow depth at a specified convergence tolerance and an initial flow depth
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TABLE 1. Range of Flow-Resistance Coefficients,

Depths Used in Test Runs

Variable

(1)

c

n

sn

Lower value

(2)

30.0

0.01

0.00001

0.01

Channel Slopes, and Flow

Upper value

(3)

90.0

0.15

0.10

3.0

Noic: C = Chezy's C; n = Manning's n; So = channel slope; and >•„ = normal flow

deplh.

TABLE 2. Maximum

Guess of 2 m

Tolerance

(1)

IO"7

10"'

10"'

10-

10"'

10"J

Error as Function of Tolerance with

Maximum Absolute

Chezy

(2)

4.77 x

7.15 x

4.04 x

6.99 x

3.62 x

5.06 x

10"

10'

10'

10'

10"

10 '

an Initia

Error

Flow-Depth

Manning

4.77

7.15

5.01

6.68

8.67

4.61

(3)

X

X

X

X

X

X

10"8

10"'

10"'

lO"5

io-

10"'

TABLE 3. Maximum Number of

with Convergence Tolerance of

Initial flow-depth

guess (m)

d)

10'°

10-

10"'

1.0

2.0

3.0

6.0

20.0

50.0

102

10'

104

Iterations as Function of Initial

10-

Maximum Number of

Chezy

(2)

9

9

8

7

7

7

7

8

8

8

9

9

Flow-Depth Guess

Iterations

Manning

(3)

10

10

9

8

8

8

8

9

9

9

10

10

guess. The absolute value of the difference between the given flow depth

and the estimated flow depth is a measure of the numerical procedure error.

The number of iterations required for convergence is a measure of the nu
merical procedure speed.

For each selected convergence tolerance, initial flow depth guess, and flow
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TABLE 4. Number of Iterations and Absolute Errors Using Chezy's C with Tol

erance = 10~4 and )•„ = 2 m

Cross section

d)

Triangle

Rectangle

Trapezoidal

Complex 1

Complex 2

AU

(2)

1

4

4

5

5

£»»

(3)

0.0

0.0

0.0

1.67 x 10"'

1.76 x 10"'

AU

(4)

1

6

6

7

7

E^

(5)

2.38 x 10"'

6.99 x 10"'

2.62 x 10"'

1.45 x 10"'

1.14 x 10"'

Note: >'o = initial flow-depth guess; Nma = minimum iterations; £„,„ = minimum ab

solute error; = maximum iterations; and £„,, = maximum absolute error.

TABLE 5. Number of Iterations and Absolute Errors Using Manning's n with Tol

erance = 10"* and >„ = 2 m

Cross section

(1)

Triangle

Rectangle

Trapezoidal

Complex 1

Complex 2

/Vn.,n

(2)"
1

4

4

5

5

£„„

(3)

0.0

1.86 x 10"*

9.31 x 10"'"

1.18 x 10'

1.25 x 10"'

AU.

(4)

1

7

6

7

7

(5)

1.19 x 10"'

4.98 x 10"'

6.68 x 10"

4.34 x 10-'

4.08 x 10"'

Note: >'o - initial flow depth guess; /Vran = minimum iterations; £n;u, = minimum ab

solute error, A/^,, = maximum iterations; and £ml = maximum absolute error.

resistance equation (Chczy or Manning), a set of 625 test runs were per

formed. These tests used five channel cross sections [Fig. 3(o-c) and 4(a-

b)] and five equally spaced values for each of bottom slope, flow resistance,

and flow depth. Table 1 shows the ranges used for these values. Each set

of tests took less than 5 s of processing time on a VAX 750.

To determine accuracy as a function of tolerance, six sets of test runs were

performed for each flow resistance equation with the initial flow-depth guess

set to 2 m and convergence tolerance varying from 10"7 to 10"2. Table 2
summarizes the results of these tests. Tolerances above 10~6 are not rec
ommended because truncation errors may be such that the procedure never

converges.

To determine speed as a function of initial flow-depth guess, 12 sets of

test runs were performed for each flow-resistance equation with convergence

tolerance set to 10~4 and initial flow-depth guess varying from 1O~10 m to
104 m. Table 3 summarizes the results of these tests.

Tables 4 and 5 give a more detailed summary of the test set with a con

vergence tolerance of 10~4 and an initial flow-depth guess of 2 m.

Summary and Conclusions

An iterative procedure was presented for quickly and accurately solving

the implicit problem of determining the normal depth in complex channel

cross sections using the Chezy or Manning flow-resistance equations. Test

230



runs were performed to evaluate the iterative numerical technique, using a

rectangular, a triangular, a general trapezoidal |Figs. 3(a-c)J, and two com

plex channel cross sections [Figs. 4(a) and 4(6)1 and using Chezy's C values
from 30.0 to 90.0, Manning's n values from 0.01 to 0.15, channel bottom

slopes from 10"5 to 10"', and normal flow depths, from 0.01 m to 3.0 m
(Table 1). It was verified during the test runs that the algorithms always

converged for a convergence tolerance of 10~& or more and that absolute

errors were not affected by initial flow depth guess. A maximum number of

12 iterations was observed for the complex cross section 2 (Fig. 4(A)] when

using the Chezy equation and a tolerance of 10~7 and an initial flow-depth

guess of 2 m. The same tolerance and initial flow-depth guess resulted in a

maximum number of 13 iterations for the second complex cross section when

using the Manning equation. Absolute errors decreased with decreasing tol
erance. A tolerance of 10"3 and an initial flow-depth guess of 2 m resulted
in a very satisfactory maximum absolute error of only 8.67 x 10"" m. It
also was verified during the test runs that the initial flow depth guess does
not significantly affect the algorithm performance (Table 3).

Tests similar to those devised for the iterative procedure were also devised

for the Newton-Raphson method, except that the two complex channel cross
sections were not used. It was observed that the iterative procedure is com
putationally efficient comparable to the Newton-Raphson method with suit

able starting position (number of iterations and computation times were gen

erally a little larger for the Newton-Raphson method) and very insensitive
(timewise) to starting position.

In conclusion, the test results have shown that the iterative procedure

presented herein meets the requirements of guaranteed convergence, com

putational efficiency (speed and accuracy), and ability to handle both trap

ezoidal and complex channel cross sections. Because uniform flow is a con

dition of fundamental importance in channel-design problems and natural
stream calculations, the techniques described here arc useful because they

offer a fast, accurate solution and can be implemented in computer simu
lation models.

A computer program has been written to implement the alternative iter
ative procedure on a computer. The source code was written in standard

FORTRAN 77 for efficiency and portability, especially among personal

computers. A copy of the program can be obtained from the writers.
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Appendix II. Notation

The following symbols are used in this paper:

A

aua2,a,,aA

b

C

C,,Cj

K

N

n

P

Q
R

s0

V

wLt

wR,

y

>',

Z1.Z2

a

P

= flow cross-sectional area;

= constants;

= channel bottom width;

= Chczy factor of flow resistance;

= constants;

= coefficient;

= number of horizontal subsections describing complex cross

section;

= Manning coefficient of hydraulic roughness;

= wetted perimeter;

= flow discharge;

= hydraulic radius;

= channel bottom slope;

= mean flow velocity;

= width of subsection 1;

= left-hand-side distance from centerline of channel cross

section corresponding to flow depth y,\

= right-hand-side distance from centerline of channel cross

section corresponding to flow depth y,;

= flow depth;

= flow depth at subsection i;

= side slopes;

= coefficient; and

= coefficient.
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ERRATA

Normal-Depth Calculations in Complex Channel Sections

Edward D. Shirley and Vicente L. Lopes, Members, ASCE

Journal of Irrigation and Drainage Engineering,

Vol. 117, No. 2, March/April, 1991.

These are corrected equations:

f0r 1 * i < N (23d)


